Discontinuous Galerkin methods for solving a quasistatic contact problem

نویسندگان

  • Fei Wang
  • Weimin Han
  • Xiaoliang Cheng
چکیده

We consider the numerical solution of a nonlinear evolutionary variational inequality, arising in the study of quasistatic contact problems. We study spatially semi-discrete and fully discrete schemes for the problem with several discontinuous Galerkin discretizations in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error analysis is established for the schemes, reaching the optimal convergence order for linear elements. Numerical results are presented on a two dimensional test problem to illustrate numerical convergence orders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for Solving the Signorini Problem

We study several discontinuous Galerkin methods (DGMs) for solving the Signorini problem. A unified error analysis is provided for the methods. The error estimates are of optimal order for linear elements. A numerical example is reported to illustrate numerical convergence orders.

متن کامل

Discontinuous Galerkin Methods for an Elliptic Variational Inequality of 4th-Order

Discontinuous Galerkin (DG) methods are studied for solving an elliptic variational inequality of 4th-order. Numerous discontinuous Galerkin schemes for the Kirchhoff plate bending problem are extended to the variational inequality. Numerical results are presented to illustrate convergence orders of the different methods.

متن کامل

Superconvergence Properties of Discontinuous Galerkin Methods for Two-point Boundary Value Problems

Three discontinuous Galerkin methods (SIPG, NIPG, DG) are considered for solving a one-dimensional elliptic problem. Superconvergence for the error at the interior node points and the derivative of the error at Gauss points are considered. All theorectical results obtained in the paper are supported by the results of numerical experiments.

متن کامل

Discontinuous Galerkin Methods for Solving Double Obstacle Problem

In this paper the ideas in [19] are extended to solve the double obstacle problem by using discontinuous Galerkin methods. A priori error estimates are established for these methods, which reach optimal order for linear elements. We present a test example, and the numerical results on the convergence order match the theoretical prediction.

متن کامل

A domain decomposition strategy for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method

A domain decomposition strategy is introduced in order to solve time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. Its principles are explained for a 2D model problem and its efficacy is demonstrated on 2D and 3D examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2014